
(To his 80th Birthd?y) 

Tm 1 lth of September 1971 was the 80th birth- 
day of Professor Alaksandr Savvich Predvodi- 
teiev, Doctor of Physical and Mathematical 
Sciences, Corresponding Member of the USSR 
Academy of Sciences, State Prize Winner, Head 
of Molecular Physics Section at the Lomonosov 
Moscow State University. 

Aleksandr Savvich Predvoditelev was born 
in 1891 in a poor peasant family in the village 
of Bukrin, Pronsk District, Ryazan Province. 

Before he joined the army Predvoditelev’s 
father was a poor farmer, sharing a small land 
plot with another male person of his family. 
During his military service he was advanced to 
the position of an orderly. After his military 
service he worked as a surgeon’s assistant in 
various towns of Russia. He died of tuberculosis 
in 1907 at the age of 34. After her husband’s 
death Alek~ndr’s mother worked at a factory 
but her scanty earnings could not provide for 
normal life of the family. 

Aleksandr received his primary education in 
a village people school, then attended the 
Pronsk secondary school. When his parents 
moved to Ryaxan, be entered the Ryazan town 
secondary school and upon finishing it, he was 
admitted to the grammar school (gymnasium). 
Predvoditelev’s years in the gymnasium were 
full of material hardships and, after his father’s 
death, his tuition fee was paid for him by the 
Ryazan So&e@ to Assist Poor ~~nasium 
Students. In the upper classes he had to earn 
his living, working as a tutor in rich families. 

After successfully finishing the gymnasium, 
AIeksandr entered the Erst course of the Physical 
and Mathe~~~l Department of Moscow 
University. In spite of poor financial position 
Aleksandr took an active part in scientific 

research even in his first years at the University. 
He also spent a lot of time and efforts to extend 
his scientific knowledge. On graduating from 
the University, Predvoditelev, as one of the 
best students, was left at the Department to 
prepare to work as a professor. 

From 1915 to 1919 Aleksandr Savvich worked 
as a Junior Assistant for practical work in 
physics at Moscow University, at the same time 
he carried out scientific research on optics and 
molecular physics. 

In 1919 Aieksandr Sawich passed his master’s 
(.Ma~ster) examination and, after delivering 
two test lectures, obtained the right to teach at 
the Physical and Mathematical Department of 
the Moscow University. From then on all his 
subsequent life has been connected with the 
University. 

After 1919 he worked as a Senior Assistant 
for practical work in physics and delivered a 
number of special courses mainly in some 
branches of optics and molecular physics. Be- 
ginning from 1928 the authorities of the Uni- 
versity of the Physicaf and Mathematical De- 
partment promoted A. S. Predvoditelev, first, to 
Vice-Chairman of the Subject Commission, 
then to Assistant of the Dean of the Physical 
and Mathematical Department and, finally, to 
the director of the Physical Research Institute 
of Moscow University where he remained till 
1946. 

In 1929 A. S. Predvoditelev began to treat 
Thermal Physics as a special field of physics, in 
1930 he was appointed as Professor and Head 
of the Chair of Thermal Physics which is now 
called the Chair of Molecular Physics. He has 
been the head of this chair up till now. 

Being the Dean of the Physics Department at 
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Moscow University A. S. Predvoditelev carried 
out extensive administrative and public activity 
from 1937 to 1946. Those were the most difficult 
years in the history of Moscow University. The 
work of the whole body of the university had 
to be rearranged for the needs of strengthening 
the defence power of our country. 

From 1920 to 1923 A. S. Predvoditelev com- 
bined his work at the University with teaching 
physics at the Bauman Higher Technical School 
where he delivered lectures and guided practical 
work. From 1919 to 1930 he was a senior 
physicist (now senior scientific worker) at the 
Research Institute of Physics and Biophysics. 
From 1928 to 1932 A. S. Predvoditelev worked 
at the physical laboratory of the All-Union 
Institute of Labour Protection, and in 19299 
1937 as a tutor and then as a scientific director 
at the Physical and Engineering Laboratory of 
the Dzerzhinsky All-Union Institute of Thermal 
Engineering. In 1938 A. S. Predvoditelev was 
invited to work at the Power Engineering 
Institute of the USSR Academy of Sciences, 
where he arranged and headed the Problem 
Laboratory of Combustion Physics up to 1967. 

At all of the above research institutions A. S. 
Predvoditelev organized either large research 
laboratories or groups of researchers on various 
problems of modern physics. 

A. S. Predvoditelev is a prominent Soviet 
scientist whose activity is not restricted to a 
narrow sphere of a single scientific or engineer- 
ing problem. A wide range of scientific interests, 
high erudition, many-sided public activity and 
devotion to high ideals are characteristic of his 
life. The name of A. S. Predvoditelev is widely 
known both in our country and abroad, and a 
number of his brilliant and profound investiga- 
tions in various fields of physical science have 
made a valuable contribution to the treasure of 
world science. 

Predvoditelev obtained his most fundamental 
results in the solution of problems on gas and 
liquid state hydrodynamics, physics of com- 
bustion and explosion, physics of solids, physical 
acoustics of small and finite amplitudes, physical 

chemistry and physics of discontinuous pro- 
cesses. 

The results of his experimental and theoretical 
studies are published in 200 monographs and 
papers. 

A. S. Predvoditelev is a founder and organizer 
of the scientific school that is active in many 
research and educational institutions of this 
country. 

Two features are peculiar to Predvoditelev’s 
school. First, all the problems put forward by 
the interests of developing national industry 
and technology are physically based. Their 
practical study and solution are combined with 
theoretical analysis of the physicai funda- 
mentals of every problem considered. Investiga- 
tions of physical and chemical processes in 
heterogeneous combustion carried out by Pred- 
voditelev and his pupils, awarded with the 
State Prize in 1950, may serve as an example. 
Later on many scientists from Predvoditelev’s 
school founded new independent bodies, groups. 
trends. Their activity has been progressing 
under the influence of the ideas developed at 
the laboratories directed by A. S. Predvoditelev. 

Predvoditelev is a talented tutor of scientific 
workers who always encourages his coworkers 
to develop independent scientific views and 
approaches to the problems studied. Broad 
variety of his scientific ideas, high requirements 
to his work and the work of his assistants, 
ability to profound scientific analysis and high 
general erudition have been favouring the 
progresses of research groups directed by 
Predvoditelev and his numerous pupils. 

A. S. Predvoditelev has trained more than 120 
scientific researchers. Some 30 of this number 
are doctors and professors, two are correspond- 
ing members of the Academy of Pedagogical 
Sciences of the USSR, one is an Academician 
of the Byelorussian Academy of Sciences, one is 
a Corresponding Member of the Ukranian 
Academy. 

A. S. Predvoditelev has been paying serious 
attention to the problems of history and 
methodology of physics. He has published 
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numero~ essays and papers concer~ng the 
role of Russian scientists in development of 
fundamental ideas of modern physics. He was 
the initiator of publication of “Essays on History 
of Physics in Russia” (1949) and contributed 
some papers to the book. He is the Editor of 
two volumes of “Development of Physics in 
Russia” published in 1970. 

A. S. Predvoditelev has greatly contributed 
to publication of fundamental works on history 
of physics by P. S. Kudryavtsev, B. I. Spassky 
and others. He has taken great efforts to acquaint 
the world scientific commute with the achieve- 
ments of Russian and Soviet scientists. 

This is a general description of the life and 
work of A. S. Predvoditelev who has walked 
the way from a poor peasant to a prominent 
physicist. 

The Government has highly estimated his 
scientific, pedagogical and organizing activity 
and awarded him the Lenin Order, four Orders 
of the Red Banner of Labour, the Order of Red 
Star and numerous medals. 

LIST OF THE MAIN SCIENTIFIC WORKS BY 
A. S. PREDVDDMELEV 

1. 
2. 

3. 

4. 
5. 
6. 

7. 
8. 

9. 

10. 
11. 

1918 
Light dissipation in oblique media, Izv. Inst. Siofz. 
L’indice d’absorption des millieux troubses. Arch. 
Phys. SC. 

1920 
Necessary physical assumption forming the basis for 
derivation of the radiation law, Wsp. Fiz. Nauk II. 
vyp. I. 
Reaction rate kinetic theory, Usp. Fiz. Nauk 2, vyp. I. 
On the theory of gas reactions, iJsp. Fiz. Nauk 2. vyp. I. 
On thermal expansion of crystal solids, Vsp. Fiz. Nauk 
2, vyp. I. 
Electronic theory of metals, Usp. Fiz. Nauk 2, 1. 
Electric field and gas pressure effects on spectral lines. 
Usp. Fiz. Nauk 2, 1. 
New theory of opticai series, Usp. Fiz. Nauk 2. 1. 

1923 
One remarkable quantization case, Usp. Fir. Nauk 3. I. 
Ammonia synthesis by the points of slow electrons. 
Usp. Fiz. Nauk 3. 1. 

1925 
12. Gber der Wirklung der Schichtdicke auf den Photo- 

elektrischen Effekt in Farbstoffen, Z. P/tys. 31, 718. 
13. Absorption des Lichtes durch Ammoniak, Z. Phys. 6. 
14. Zur Kinetik Photochemischer Prozesse in Farbstoffen. 

Z. Phys. 32, 3. 
15. Zur Theorie des Abklingens der Fluoreszenz. Z. Phys. 

32, 11/12. 
16. ifber die Snezifische W&me des Wasserstoffmolektil. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

2. Phys. M-, 213. 
Faber die Abhangigkeit des Absorptionskoeftizienten 
van der Dicke der Absorbierten Farbschicht. 2. Phvs. 
35. 1. 

1926 
Zur Frage nach der Phot~lekt~schen Ermildung. Z. 
Phys. 35, 10. 
br die Abhiingigkeit der Fliissigkeitsdichten von der 
Temperatur, Z. Phys. 36,7. 
Der Einfluss des Absorbierten Gases auf die Griisse 
des Photoelektrischen Effektes, Z. Phys. 38.4/S. 
Zur Frage der Abhlngigkeit der Dichte von der Tem- 
peratur, Z. Phys. 40, 6. 

1927 
gber den Einfluss des Kristallwassers auf den Photo- 
elektrischen Effekt in den Kristallhydraten (Teil I). 
Z. Phys. 42, 1. 
uber den Einfluss des Kristallwassers auf den Photo- 
elektrischen Effekt in den K~s~llhydrat~ (Teil II). 
Z. Phys. 44,3. 
On chemical reaction kinetics of solid and gaseous 
components that result in formation of compounds. 
Zh. Prikl. Fiz. 4. 3. 

1928 
uber die Gesetze der Molektilstosse mit einer Ober- 
fliiche mit welcher das Gas Reagiert, Z. Phys. 46, 5/6. 
Das Maxwelliche Relaxationsgesetz und die Innere 
Reibung der Fliissigkeiten, Z. Phys. 49, 3/4. 
One possible method of measuring heating of equip- 
ment for chemical compounds which may dissociate in 
vacuum, Zh. Prikl. Fiz. 5 (additional issue). 
What is Light Recortling? Nauka i Tekhn., Izd. Mosk. 
Rab. 
uber die Absoluten Ges~hwindigkeiten der H,O- 
Molekiile, welche bei der Dehydration von Kristall- 
hydraten Herausfliegen, Z. Phys. 51, l/Z. 
Zur Kinetik Chemischer Reaktionen zwischen einer 
Festen und einer Gasformigen Komponente, die zur 
Bildung Komplexer Verbindungen Fiihren. Z. Phys.. 
Chem. 132, l/2. 

1929 
Berichtigung zur Arbeit iiber die Absoluten Gesch- 
windigkeiten der H,O-Molektile, welche bei der De- 
hydration von Kristallhydraten Herausfliegen. Z. 
Phys., Chem. Bd. 54, l/2. 
One geometric interpretation of hydrogen atom 
structure following Rutherford-Bohr, 2h.R.F.Hz.U. 
61, 5. 
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33. 

34 

On possibility of relation between Bohr postulates and 
de Broglie-Schroedinger equation. Zh.P.F.Kh.0. 61. 5. 
On measuring heat of dehydration in vacuum by tor- 
sion balance (with co-author L. SELIVANOV). Zh. Prikl. 
Fiz. 5. 3-4. 

1933 
35. 

36. 

On the theory of fluids and viscosity of associated 
molecules, Zh. Eksp. Teor. Fiz. 3. 3. 
Viscosity of liquids and gases from the viewpoint of 
cyclic motion. Zh. Eksp. Tear. Fiz. 3. 3. 

1934 
37. 

38. 
39. 

40. 

41. 

Stability of mechanical motions in atomic physics. Zh. 
Eksp. Teor. Fiz. 4, 1. 
Heat of strong electrolytes, Zh. Eksp. Tear. Fiz. 4, 1. 
Relation between thermal conductivity, heat capacity 
and viscosity of liquid bodies, Zh. Eksp. Teor. Fiz. 4, 1. 
Thermal conductivity of solid heat insulators. Zh. 
Eksp. Teor. Fiz. 4, 8. 
Thermal conductivity of electroconducting bodies, Zh. 
Eksp. Teor. Fiz. 4, 8. 

1935 
42. 

43. 

44. 

45. 

46. 
47. 

A contribution to the theory of the Bunsen flame. 
Techn. Phys. USSR 11,4. 
A contribution to the problem of the decay of a gas 
jet discharging from a pipe, Techn. Phys. USSR 11, 4. 
Theory of gas reactions in high-frequency electric 
discharge, Zh. Fiz. Khim. 6, 4. 
Jet attenuation at gas flow out of tube (with co-author 
E. V. STUPOCHENKO), Zh. Tekh. Fiz. 5, 8. 
On the Bunsen flame theory, Zh. Tekh. Fiz. 5, 8. 
Solid admixture effect on flame propagation velocity 
in fuel gas mixtures (with co-author S. I. GRIBKOVA). 
Zh. Tekh. Fir. 7, 18-19. 

1940 
48. 

49. 

Burning of coal channel walls at forced oxygen diffu- 
sion (with co-author 0. A. PUKHANOVA), Zh. Tekh. Fiz. 
10, 13. 
Burning of coal particle in a gas flow, Zh. Tekh. Fiz. 
10, 16. 

1941 
50. Theory of coal channel burn-out, Zh. Tekh. Fiz. 11, 10. 

1945 
51. Experience of constructing kinetics of sulphur dioxide 

oxidation in electric discharge. Uch. Zap. MGU 75. 
kn. 2. ch. 2. 

1946 
52. Physical problems of heat engineering, Izv. Vses. Tepl. 

Inst. 9-10. 

1947 
53. Theory of heterogeneous combustion and mechanism 

of solid fuel burning in a bed (with co-author Kh. I. 
KOLODTSEV). Proc. World Power Engng Conference, 
Hague Econom. Congr.. Gosenergoizd.. Moscow. 

54. 

55. 

56. 

57. 

58. 
59. 
60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

Possible classification of statistical systems, Vesm,k 
MGU. 7. 
The Arrhenius law in chemical kinetics of gas reactions. 
Dokl. Akad. Nauk SSSR, Otd. Khim.. 51. 7. 
Gasification at coal burning in a bed. Izv. Akad. Nauk 
SSSR, ONTI, 10. 
Quasi-steady state of chemical gas systems. Ve.ytnik 
MGCJ, IO. 

1948 
Fluctuations in statistical systems, Vestnik MGU. 4. 
Theory of acoustic dispersion, Vestnik MGU. 5. 
On statistical assembly of material points of variable 
mass, Vestnik MGU, 6. 
On molecular-kinetic foundations of hydrodynamic 
equations, Izv. Akad. Nauk SSSR, ONTI, 4. 
Some invariant quantities in the theory of thermal 
conductivity and viscosity of fluids, Zh. Fiz. Khim. 22. 3. 

1949 

Carbon Burning (with co-authors L. N. KHI?‘RIN. 0. A. 
TSUKHANOV, KH. I. KOLQD~SEV and M. K. GROD- 
ZOVSKY). Izd. Akad. Nauk SSSR, Moscow-Leningrad. 
Some considerations on the operator method in wace 
mechanics, Vestnik MGU, 2. 
On thermal motion in condensed media and their 
state equations, Vestnik MGU. 3. 
Modification of Zhukovsky’s equation for disturbed 
motions of statistical systems, Vestnik MGU, 5. 
Some applications of Zhukovsky’s equation for dis- 
turbed motions of statistical systems, Vestnik MGU. 6. 
Some remarks on nature of elementary particles. 
Vestnik MGU, 8. 

1950 
69. On molecular heat transfer in liquids, Dokl. Akad. 

Nauk. Otd. Fiz. Khim. 72. 2. 
70. Clausius theorem of mean ergal and stable statistical 

systems, Vestnik MGU. Otd. Fiz.. 6. 

71. 

72. 

73. 

The state of art in the theory of homogeneous-hetero- 
geneous combustion. Izv. Akad. Nauk SSSR. Otd. 
?ekh. Nauk. 5. 

1956 
Thermal Conducrivity and Viscosily oj’ Liquids and 
Compressed Gases. Collected Papers, volume dedicated 
to P. P. LAZAREV, Izd. Akad. Nauk SSSR, Moscow. 

1957 
Tables of Thermodynamic Functions oJ Air (with 
co-authors E. V. SXJPOCHENKO, I. P. STAKHANOV. 
E. V. SAMUILOV, A. S. PLESHANOV and I. B. ROZH- 
DESIVENSKY). Izd. Akad. Nauk SSSR, Moscow. 

74. General properties of discontinuous processes and 
acoustic effects in nonhomogeneous solids, in Applica- 
tion of Ultra-acoustics to Substance Investigation. Izd. 
MOPI, vyp. 4. 

1953 
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15. 

76. 
Il. 

78. 

One method of acoustic effect description. Appijcatjon 
of Uhraacoustics to Subsrance Investigation. Izd. 
MOPI, vyp. 6. 
On the so-called Rao rule, ibid., 7. 
On the possible method of describing structural non- 
uniformities in liquids, ibid. 
Theoretical examination of vibratory movement of 
the flame front in closed vessel, Trans. 7th Inter- 
national Symposium on Combustion and Explosion. 
On automodelling processes in chemically active 
media, ibid. 
On spin detonation, ibid. 

94. On condensed media state equation (Theoretical 
Portion), In&. Fiz. Zfr. 5, No. 8. 

95. On condensed media state equation (Experimental 
Portion), Inzh. Fiz. Zh. Zh. 5, No. 11. 

96. On conservation laws at the shock-wave front, Physical 
Gas Dynamics, Heat Transfer and Gas Thermo- 
dynamics at High Temperatures, Izd. Akad. Nauk 
SSSR, Moscow. 

97. On one inconsistency of the Zjuge Theory on regular 

19. 

80. 
98. 

1959 
81. 

82. 

On the theory of adsorption wave. DokI. Akad. Nauk. 
99. 

Otd. Fiz. k%im 127, No. 3; 121, No. 4. 
Movement of Combustion zone as Hydrodyn~~c 

100. 

Inhomogeneity. Collected Papers, Volume Dedicated to 
G. M. KRWIZHANOVSKY. 

83. Hydrodynamic inhomogeneities in combustion and 
101. 

explosion theory, GasdynamicsandCombustion Physics. 
102. 

84. 
Izd. Akad. Nat& SSSR, Moscow. 
Dispersion of acoustic waves in raretied gases (Paper 

103. 

l), Application of Ultraacoustics to Substance Investiga- 
tion. Izd. MOPI, vyp. VIII. 

85. 

86. 

87. 

88. 

Dispersion of acoustic waves in rarefied gases (Paper 
2), ibid. 

105. 

Combustion of spherical particles, Proc. Higher School 
Conf. on combustion. Izd. Odess. Univ. lSO,6. 
Front evaporation and sublimation of spherical 
particles, ibid, 150, 7. 
Velocity of combustion front propagation in two-phase 
mixtures, ibid., 150, 7. 

106. 

1961 1967 
89. On chemical reaction rates in turbulent flows. Inzh. 

Fiz. Zh. 4, 1. 
107. 

90. On thermal motion type in liquids, Inzh. Fiz. Zh. 4, 
6; 7; 8. 

108. 

91. On transverse and longitudinal wave dispersion in 
relaxation media, Vestnik Mosk. Univ., ser. III, No. 3. 

92. On acoustic wave dispersion in relaxation media, Vest- 
109 

1958 

motion of shock breaks with spherical and cylindrical 
symmetry, ibid. 
On molecular-kinetic consideration of the Chapman- 
Zjuge first rule, ibid. 

1963 
On critical phenomena of liquids and gases. Inzh. Fiz. 
Zh. VI, 4, 123. 
The teaching of space and time, modem science. 
History and Methodology of Natural Sciences. Izd. 
MGU. 
On helium state equations, Inzh. Fiz. Zh. VI, No. 6.54. 
On kinetics of statistical motion, Inzh. Fiz. Zh. VI, No. 
9, 87. 
On state equations of carbon monoxide and dioxide, 
Inzh. Fiz. Zh. VI, No. 12, 100. 

1964 
On state equations of xenone and methane, Inzh. Fiz. 
Zh. VII, Nb. 1, 93. 
On the general theory of wave processes, Collected 
Papers, Physical Gas Dy~rn~~ and Gas Properties at 
High Temperatures. Izd. Akad. Nauk SSSR. 

1965 
Mathematical computation and our knowledge. His- 
tory and Methodology ofNatural Sciences. Izd. MGU. 

To the theory of two-phase mixtures, Collected papers. 
Gas Properties at High Temperatures, ENIN. 
On conditions of ignition in fuel gas mixtures, ibid. 

1970 

nik Mosk. Gos. Univ., ser III, No. 4. 

Human Being and Reality, History and Methodology 
of Natural Sciences. Izd. MGU. 

93. On aer~ynami~s of rarefied gases and problems of 
110. On physical basis of h~r~lic differential equations, 

heat transfer. int. f. Heat Mass Transfer 3. 
Uch. Zap. Krasaodarsk. Politechn. Inst. 

111. Theory of heat and Riemannian manifolds. Collected 
Papers, Heat and Mass Transfer Problems, Izd. 
Energia. 
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ON A. S. PREDVODITELEV’S INVESTIGATIONS INTO HYDRODYNAMICS 
AND HEAT TRANSFER 

A. V. LUIKOV AND V. A. BUBNOV 

Heat and Mass Transfer Institute of the BSSR Academy of Sciences, Minsk, USSR 

Hydrodynamic motions represent a wide 
range of natural processes. Therefore, hydro- 
dynamic methods which allow transition from 
microscopic description of the natural processes 
to macroscopic one are widely used in various 
fields of physics. 

Different degree of accuracy of the description 
of the above transition corresponds to different 
forms of hydrodynamic continuum equations. 
The ideal liquid model described by hydro- 
dynamic equations in the Euler form proved to 
be valid for a narrow range of the natural 
processes. Presumably, the incompleteness of 
these equations was originally expressed in the 
d’Alembert paradox. 

The discovery of internal friction in liquids 
and gases allowed the hydrodynamic equations 
in the Euler form to be supplemented and 
specified. For this we are indebted to Navier, 
Poisson, Saint-Venant and Stokes. The tirst of 
the above scientists derived equations for 
viscous fluid from the molecular-kinetic theory 
based on various considerations of molecular 
interaction. However, Navier did it as far back 
as 1822, while Poisson seven years later. Alterna- 
tive method for deriving the above equations 
was originally suggested by Saint-Venant in 
1843 and Stokes in 1845. Now this method is 
referred to as phenomenological. 

Stokes has succeeded to prove that the 
conditions of adhesion exist at the liquid-solid 
wall boundary and thus he was first to formulate 
the boundary conditions and put an end to the 
argument lasting from Euler’s and Bernoulli’s 
times. 

At present the hydrodynamic equations of 
this form are named the Navier-Stokes equa- 
tions and constitute the basis of classical hydro- 
dynamics. 

In 1866 the memoirs On Dynamic Gus Theory 
by CI. K. Maxwell appeared concerning the 
method which may be used to obtain all heat 
and mass transfer equations. 

In this paper Maxwell discovered the mole- 
cular-kinetic structure of Navier-Stokes equa- 
tions, in particular, he has shown that in the 
Navier-Stokes continuum the visible (macro- 
scopic) and thermal (microscopic) motions 
coexist. 

Hagen and Osborne Reynolds were the first 
who revealed incompleteness of the Navier- 
Stokes equations while studying water motion 
along the tubes of various diameters. Reynolds 
has shown that at certain conditions defined by 
a dimensionless number later named after him, 
the flow pattern begins changing sharply and 
experimental data no longer agree with 
Poiseuille solution. Later this phenomenon was 
referred to as turbulence and defined by some 
critical Reynolds number. 

For a long time the hydrodynamic Navier- 
Stokes equations did not rise any doubts under 
the so-called laminar flow conditions below the 
critical Reynolds numbers. This was partly 
accounted for by huge mathematical difficulties 
involved in general solutions of the above 
equations. 

However, reported developments in mathe- 
matical physics and aircrati engineering and new 
materials revealed inadequacy of the Navier- 
Stokes equations even in the laminar flow 
region. The necessity arose to refine the above 
equations. This problem was most sharply 
stated by the American scientist Truesdell in 
“Modem Crisis in the Kinetic Gas Theory”, 
1958. 

Professor Predvoditelev’s hydrodynamic in- 
vestigations are connected with this problem. 
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1. Fundamental equation of kinetic theory 
Nowadays the hydrodynamic equations are 

derived from solutions of the Boltzmann integro- 
differential equation by the Chapman-Enskog 
method. The idea of this method was known to 
Boltzmann; it was presented in his lectures on 
the gas theory. However, in the greater portion 
of the book studying transfer processes Boltz- 
mann deals with Maxwell’s method. 

He wrote :* 
“Up till now we followed the brilliant method 

of Maxwell which has been also used by 
Kirchholf and others. The essence of this 
method is that it not at all connected with 
calculation of the function f(x, y, z, 5, q, c, t) 
defining the velocity distribution. There exists 
an alternative method: it just proceeds from 
calculation of this function. Though this method 
did not attract any attention, nevertheless, I 
would like to touch upon it in some words as 
we shall need this very function f when calcu- 
lating entropy”. 

In his hydrodynamic investigations A. S. 
Predvoditelev has never used the Boltzmann 
equation. He expressed his view on it in the 
paper submitted to the 2nd All-Union Heat and 
Mass Transfer Conference, Minsk, 1964. By 
that time a number of experimental data had 
been accumulated which came in conflict with 
the solutions of Boltzmann’s integro-differential 
equation. 

In this paper Predvoditelev supposed that if 
the methods of solving the Boltzmann equation 
are quite perfectly right then the contradictions 
spoken of may be attributed to incompleteness 
of this equation. Further, he analyzed physical 
significance of the Boltzmann equation as 
follows : 

“As is known, two operations at the molecule 
distribution function with respect to heat veloci- 
ties (f) are equated. The first operation is used 
to calculate change of the function with respect 

* L. Boltzmann, Lectures on Gas Theory, Translation 
from German, ed. B. I. Davydov. Gostekhizdat, Moscow, 
pp. 225 (1956). 

to time, coordinates and velocities per unit time. 
This change may be written down as follows : 

Df af af af af af _=- 
Dt at 

fug”-+ wau+xz 
ay 

+yaf+zaf 
au aw 

here the equalities are implied : 

-=x!!=,w=z au 
at ’ at ?at . 

The second operation is used to calculate the 
change (per time unit) of the same function due 
to molecular collision. If velocity components 
of the first type of molecules are designated by 
tl, qr, cl and those of the second type of mole- 
cules before collision by t2, q2, c2, then the 
probability measure for their approaching each 
other may be taken equal to fifi. Subscripts 
indicate the components of heat velocities of 
which the distribution function must be taken. 
Upon collision, velocity components of the 
first and second type will take the values 

and the productf; f; will serve as a probability 
measure of increasing distances between them. 
Thus each collision of one molecular group with 
another is characterized by the difference 

f;f; -f1f2 = Sfifi 

Summation of these differences over the whole 
phase volume gives the change off function per 
time unit due to molecular collision. Thus we 
have 

Df -= . . 
Dt ” 

Sfl fi Vb db dw, d$. 

Here the product Vb db do, d4 denotes a 
unit phase volume where I/ is the relative 
velocity of colliding molecules; b is the shortest 
distance between straight-line trajectories of 
molecules; 4 is the angle between the plane of 
trajectories of relative motion of the first type of 
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molecules and some uniform plane crossing fi: 
do, is the product dc, dq, d[,. The question 
arises whether the operations discussed are 
equal. The first operation may give continuous 
values of the phase space coordinates. The same 
is not evident for the second operation. I am 
inclined to believe that the second operation 
should lead to discontinuous values, as the 
variation SfiJZ may be not only infinitesimal. 
This implies that equating the operations dis- 
cussed to each other is principally wrong. As is 
known, these are equallized without thinking 
over, i.e. it is taken for granted that the variation 
SfifZ is a continuous function of the phase 
space coordinates. I believe that validity of such 
equalizing will increase with the density of gas”. 

The criticism however was not substantiated 
enough. At this time Predvoditelev completed 
the generalization of the Navier-Stokes equa- 
tions and these generalized equations did not 
follow from the solutions of Boltzmann’s equa- 
tion. Moreover, in this paper experimental 
check of these equations was made in the case 
of acoustic wave dispersion. In particular, the 
following formula was obtained for the sound 
absorption coefticient in a rarefied gas based on 
Predvoditelev’s equations discussed 

(0.7~ + 0.23),/r 

@ = (r + 0.575)Z~(r + 0,575)’ 

Here r is the known dimensionless quantity in 
acoustics which is the ratio of pressure to the 
product of viscosity by frequency. 

Further, it appeared that Predvoditelev’s 
formula agrees better with Greenspan’s observa- 
tions of acoustic wave dispersion in xenon and 
krypton compared to other available formulae. 

Returning again to Boltzmann’s collision 
integral, it should be noted that discontinuity 
of the variation Sfifi emphasized by Predvo- 
ditelev is caused by discontinuous behaviour of 
the distribution function at the moment of 
molecular collision, 

Boltzmann realized that and in his last years 
in the discussion of F. Klein and A. Hefler’s 

paper at the Colloquium of the Vienna Philo- 
sophical Society he expressed very curious ideas 
concerning statistical description of physical 
effects. He considered that in a statistical system 
of material points the trajectory of position 01 
the points and trajectories of their velocity are 
continuous functions that had no derivatives at 
any point. This means that for a given trajectory 
of position, calculation of velocity is impossible. 
and positions of a material point of a statistical 
system cannot be determined from the given 
trajectory. Thus, for any physical system we 
cannot but have two sets: a set of positions and 
a set of velocities. Moreover, we should choose 
such a calculation method that would allow 
analytical relationships to be found which 
would not violate the above principle of 
Boltzmann. 

In his recent work “The Science of Heat and 
the Riemannian Manifolds” Predvoditelev 
further developed the idea of the velocity 
distribution function as continuous and differ- 
entiable over the free molecular path length at 
turning points of their trajectories. First of all, 
in this work he developed the following repre- 
sentation of a statistical system : 

“We shall concentrate on a certain molecule 
of gas. In space we shall draw sections of the 
molecule path between two collisions within a 
very long time. As a result our limited space will 
be filled almost completely with molecule 
trajectory. Also turning points of the molecule 
after its collision with others will till the space 
almost completely. If we draw a curve over 
these points, it will form a tangle. The curve will 
be continuous and nondifferentiable and will 
almost completely coincide with the trajectory 
of molecule position plotted. This tangled curve 
will be a locus of molecular velocity deviations 
from a mean velocity. Density of points on this 
line is nonuniform. A certain heat velocity of a 
molecule with the same direction as that of the 
trajectory will correspond to each point.” 

Here Predvoditelev is trying to prove that 
this physical image of a statistical system does 
not contradict Maxwell’s conception. With this 



ALEKSANDR SAVVICH PREDVODITELEV 1737 

aim we shall take some continuo~ and differ- 
entiable function with heat velocity of a mole- 
cule as an argument. We assume that for each 
point of the curve drawn through the turning 
points, a single-valued correspondence of the 
values of the above function may be found, the 
function being denoted byf. 

As the turning point is the place of collision 
of two molecules, another trajectory passes 
through it which corresponds to another collid- 
ing molecule. The distribution function for heat 
velocities of the points of this trajectory is 
designated by F. 

If we denote the value of the function f after 
turn of the first molecule trajectory by fi, then 
the function jump is 

fi -f: 

According to Dirichlet, the value of the same 
function at the break point may be assumed 
equal to 

fi +f 
2 . 

If gas is in a steady state, then the relation holds 

2(fl -f) = const 

cfl +f1 . 
In a similar way it is possible to find the relation 
for the function F also: 

- 2(F1 - ’ = consi 
(Fl + F) . 

Here we see that the minus sign appears since 
increase of the function f corresponds to 
decrease of the function F. 

Further we can write 

fiJ--~, 
f1+f Fl+F’ 

(1.1) 

From this equality the famous functional Max- 
well equation may be easily obtained 

Pr~v~itelev, however, did not restrict him- 
self by the Maxwell equation (1.2). In the said 
work he tries to obtain a special method for 
description of statistical effects without the 
concept of velocity distribution function. With 
this aim, we preliminarily suppose that cross 
point of intersection of colliding molecules 
forms a continuous surface in the space, no 
property of the system being possible to change 
continuously in transition through this surface. 

Existence of discontinuity surfaces should not 
be necessarily understood as collision of mole- 
cules. It may be supposed that in these sites 
sharp jumpwise change of some properties of 
the substance occurs and the cause of such 
changes may be considered the behaviour of 
thermal motion in the substance. 

The said discontinuo~ surface is denoted by 
S. Let partial derivative of this surface with 
respect to time be equal to the total energy with 
the reverse sign; partial derivatives with respect 
to the coordinates are equal to the corresponding 
momenta. These properties of the surface allow 
the Helmholtz equation to be written for it 

as i 
at+- 2m c as2 u 

8% = * (1.3) 

This equation implies that molecular collision 
occurs follow~g the energy conservation law. 

The function which determines the state of a 
statistical system before and after collision is 
denoted by ‘I+,, x2, xjr t). Let it possess the 
following properties: the first derivatives with 
respect to coordinates are equal to momenta ; 
the first derivative with respect to time is equal 
to a certain value that has the energy dimension. 
Such a function of the state should undergo 
discontinuities of all the first and second 
derivatives in transition through the surface S. 
Besides, the very function that in a sense deter- 
mines the structure of the assembly should also 
undergo discontinuity as molecular collisions 
should be accompany by disturbance of 
structural properties of statistical assembly as 
well. 
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Generalizing the conditions of commensur- 
ability of Hugoniot-Hadamard for the cases 
when discontinuities are observed that change 
in time and space, Predvoditelev showed that 
for the case considered the following commen- 
surability conditions should be valid 

~H=A. 
J 

Here H is the first differential invariant of the 
function S; A,, I,, I2 are arbitrary factors re- 
ferred to as discontinuity parameters of the 
corresponding order. 

Substitution of equation (1.4) into equation 
(1.3) yields 

With assumption 2, = 69, the above equality is 
symmetrical with respect to operation 6: 

or 

Adg + g6A2* = USY. (1.5) 

In the equality obtained all factors at opera- 
tion 6 are continuous. Therefore. a reverse 
operation may be applied to equality (1.5). Then 

AZ + $,r = UY + F(x,, x2. x3. t). 

Here arbitrary and continuous function F(x. t) 
may be assumed equal to zero. Then 

Ag+&Y= U!P. (1.6) 

Equation (1.61 is the same as the Schrijdinger 

equation. It becomes completely identical with 
the latter if we assume 

A=2;; 

Thus, Predvoditelev has reduced searching for 
the distribution function of a statistical system 
to searching for the integral in equation (1.6). 

Predvoditelev’s method just discussed reveals 
quite a new approach to searching for velo- 
city distribution functions and functions that 
determine structural peculiarities of statistical 
systems. 

2. On Navier-Stokes equation generalization 

N. P. Kasterin’s research on vortex motions 
became a starting point for Predvoditelev in his 
attempt to generalize Navier-Stokes equationr. 

Kasterin was the first in the Soviet Union who 
discussed the necessity to revise Euler equations 
with reference to vortex flows. He was probably 
the first who discovered that vortex motion 
initiation is connected with discontinuities 
appearing in hydrodynamic velocity field. 

However, in derivation of the Euler equations 
smooth change of velocities within physically 
small volume is postulated. That is the reason 
why the Helmholtz theorems based on the 
Euler equations disagree with experimental 
observations of vortices. 

This view of Kastering contradicted the 
generally adopted opinion that vortices arising 
may be attributed to viscous force effect. 

In 1937 Kasterin made an attempt to include 
discontinuous change of velocities in hydro- 
dynamic equations for the ideal liquid. For 
example, for potential flows Kasterin’s equation 
is of the form 

av 
- - grad: = - bgradp. 
at (2.1) 

The only difference from the Euler equation is a 
different sign before the gradient operation in 
the left-hand side of equation (2.1). 

In June 1947 in his joint researches with 
A. K. Timiryasev and T. M. Sviridov on condi- 
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tions for sandstorms to arise in the laboratory, 
Kasterin experimentally confirmed the said 
change of the sign. 

A. S. Predvoditelev decided to create a 
molecular-kinetic basis for the sign change. 
With this aim he made use of Maxwell’s method. 

If Q is the qualitative expression of some of 
the properties transferred by moving molecules, 
then Maxwell’s equation assumes the form 

d- 
+&<QM 

+$QN)+$ CQN)=gN. (2.2) 

Here 

is the collision integral 

$ N = (Q’ - Q) Vb db d$& fi do, do,. 

(2.3) 

The remaining notations are those generally 
adopted. 

However, to obtain hydrodynamic Navier- 
Stokes equations from equation (2.2) Maxwell 
used two hypotheses. 

Hypothesis A. Molecular motion is caused by 
central forces. Molecular interaction force is a 
repulsive force which is inversely proportional 
to the fifth power of the distance between 
interacting molecules. 

Hypothesis B. Transfer rates of two colliding 
molecules are equal within a physically small 
volume over which averaging is carried out. 

Maxwell applied the above interaction law to 
solution of a number of molecular-kinetic 
problems, and in 1905 Langevin confirmed his 
calculations starting from any law of molecular 
interaction forces. 

The second hypothesis of Maxwell is related 
to the problem on determination of hydro- 
dynamic velocity in a moving gas. Within the 
domain of validity of the said hypothesis, 

Maxwell identified visible velocity of moving 
gas with mean velocity of thermal molecular 
motion. Thus, he assumed that within the 
domain of validity of Navier-Stokes equations 
visible and thermal motions coexist and there is 
no gradient of hydrodynamic velocities within 
a physically small volume. 

Such a flow structure is not always the case. 
At rather large velocities such a motion in 
continuum may be disturbed near the wall or 
when vortices are formed. This hypothesis 
becomes doubtful in the cases also when flow 
dimensions are of the same order as mean 
distances between molecules that occurs in 
motion of rarefied gases. 

In 1948 Predvoditelev paid attention to this 
weak point of Maxwell’s hypothesis and formu- 
lated some new conditions for transition to 
continuum. 

If subscripts 1 and 2 indicate transfer rates of 
the first and second molecules, respectively, 
then following Maxwell, we obtain the following 
formula for the stress tensor in a very general 
case 

pr2=p+$-p(U:-u:) 
2 1 

V.4) 

4 
+ j-p-442~2 - %VI) 

2 J 

where constants A, and A, are defined by the 
interaction law. 

Definition of hydrodynamic velocity must be 
relined. For this we assume that vector V with 
projections u, v, w is superimposed on a certain 
physically small volume with molecules involved 
in heat motion of which transfer velocities are 
different. Then projection of the material point 
with respect to a fixed coordinate system may 
be expressed as 

V, = u + 5, r/; = u + q, v, = w + i. (2.5) 
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Different transfer velocities of all the mole- 
cules within a physically small volume create 
hydrodynamic velocity gradient, therefore vec- 
tor V may be treated as velocity of the gravita- 
tion centre of this volume. 

Equations (2.4) and (2.5) allow the following 
set of equations to be obtained from equation 
(2.2) : 

where x0, y,, z. are gravitation centre coordi- 
nates of a physically small volume. Similar 
formulae are implied for the components u,. ~1~. 
Wi ) W2. 

[PG - 4)l 

+ L [P(U,U, - Ul%)l 
dY 

P $ f $- 
2 

+ z- CP($ - 4Jl + ; LP(U2 w, - u1 WI)] 
ay 

ap TZ.Z ---tp 
JY L 

” 

V%+(2--)zdivV . 
aY I 

LPhzW2 - us +%)I 

where y is the index of Poisson adiabatic curve. 
Conditions for transition to continuum pre- 

sented by Predvoditelev may be reduced to the 
following hypothesis that expresses transfer 
velocities of colliding moIecules in terms of 
hydrodynamic velocity vector 

+ (z - 
1 

12.7) 

Now instead of equation (2.6) we have 
Predvoditelev’s equation 

dV 
x + $(I - ,!I) grad I” - jW div V 

+ (1 - j?) rot VxV = - igrad p + vVzV 
P 

+ v(2 - y)graddivV. (2.8) 

j3 designates the quantity /? = 2AA,j3A2 that 
was later called by Predvoditelev a nonideal 
continuity parameter. 

Predvoditelev’s equation (2.8) is more general 
than the Navier-Stokes equation which Max- 
well tried to justify in terms of molecular- 
kinetic theory. 

In fact, if we assume p = 0 and y = 5 that 
corresponds to monoatomic gas, then equation 
(2.8) becomes identical to the Navier-Stokes 
equation, But this is not always the case. 

Further, Maxwelt did not notice that his 
limitation impj~citly involved adiabatic equation 
for monoatomic gas, therefore instead of (2 - y) 
he obtained +. 

Now it may be easily seen that Predvoditelev’s 
equation becomes Kasterin’s equations if [i = 2, 
div V = 0, v = 0. 

In his investigations on acoustics Predvo- 
ditelev expressed nonideal continuity parameter 
in terms of Knudsen and Mach numbers 

p=$KnM (2.9) 

and demonstrated that equation (2.8) described 
well Greenspan’s experiments in a wide range 
of Knudsen’s number. 



3. On turbulentflows 
Hagen was probably the first who observed 

a special flow pattern that was later called 
turbulent flow by Lord Kelvin. Hagen found 
that up to a certain velocity limit liquid flow 
consists of jets which have the form of infinitely 
thin rods, the flow dimension being prescribed. 
After the limit is reached, motion becomes 
immediately nonuniform; jets disintegrate and 
begin to fluctuate. Hagen also paid attention to 
the fact that the transition from jet flow to 
turbulent flow depends on viscosity and dimen- 
sions of the flow. However, he did not discover 
general principles that may define commence- 
ment of transition. 

periodical either in space or in time. In accord- 
ance with these hypotheses on types of period- 
icity, averaging rules may be different. 

I. The averaging rules for motions periodic in 
space 

Let us separate out a physically small volume 
S. If u is the corresponding projection of 
velocity vector of any point inside S and p is 
liquid density, then upon summation over the 
volume S, we shall get the formula for determi- 
nation of average velocity 

The honour of this discovery belongs to 
Osbom Reynolds, Maxwell’s pupil who demon- 
strated that transition of one type of flow to the 
other is characterised by a special dimensionless 
criterion referred to as the Reynolds number. 
He reported this discovery in his work pub- 
lished in 1894 in which he also presented 
statistical method for writing the equation of 
turbulent flow. 

- &(PU) u=p, (3.2) 

Reynolds realized that the dynamic theory of 
Maxwell is based on geometrical division of the 
true molecular velocity into transfer and thermal 
ones, transfer velocity being mean velocity of 
thermal molecular motion which coincides with 
hydrodynamic velocity within the Navier- 
Stokes continuum. 

Mean value of thermal velocity is zero 
according to Maxwell’s conception. 

This geometrical basis of Maxwell’s method 
was adopted by Reynolds for physical repre- 
sentation of turbulent flow. For this he suggested 
to divide the velocity at any point, obtained 
from formulae similar to those of kinetic gas 
theory, into mean, referred to now as averaged 
velocity and relative velocity 

Similar formulae exist for projections E and E. 
Now in correspondence with formulae (3.1) 

velocities ii, U, W may be taken for projections of 
the velocity vector of the centre of gravity of 
volume S. Velocities u’, v’, U, are the velocities of 
relative movement of liquid particles around the 
centre of gravity. It is obvious that at any 
moment of time these velocities will be functions 
of coordinates x, y, z. The centre of gravity of 
the separated volume travels in space. Let these 
movements be represented by Ax, Ay, AZ,. Then 
the average velocity can be represented as 
follows 

U = ii, + Ax (g)O + AY(;>, + AZ(;), 

+ . . . . (3.3) 
0 

u = ii + u’, u = fi + v’, w = w f d. (3.1) 

Here u, u, w are projections of hydrodynamic 
velocity vector at the axis x, y, z. 

Further, Reynolds supposed that turbulent 
motions are Periodical motions. that mav be 

Now we shall put formula (3.3) into equation 
(3.1) multiply both parts of the resulting 
equality by density p, sum up over volume S 
and, taking into account that 

c Mu - Uo)l = 0, 
(S) 

2 MWI = 0 (3.4) 
1 _I G.+) 
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we shall get the formula for the average value 
of U’ from 

+ ($)OI:(Az)z] +,... (3.5) 

If we assume that inside of separated volume S 

rg10 = (E)O = cg)O = const. (3.6) 

then we get 

g (PU’) = 0. 
-- 

Similar considerations for v, wgive tinall,y 

g (PU’) = & (PV’) = & (PMJ) = 0. (3.7) 

II. Averaging rules for motions periodic in time 
If we choose a time interval r which would 

include time IT: and carry out summation for 
this interval, we shall have for the average 
velocity the following formula : 

(3.8) 

For any other moment of time t’ we shall get 

ii = ii, + (t - t’) d; 0 f + ; (t - t’)2 

(3.9) 

Taking into account that 

5 Mt - t’)l = 0, 5 [PC% - u)l = 0 

we have 

g (PU’) 
__- = 
c (P) 

- ;; (t - o2 

(3.10) 

Let us assume that within a singled out interval r 

($( = ($J = ($X = const. (3.11) 

Then we have 

c (pu’) = 1 (pv’) = c (pd) = 0. (3.12) 
(0 (0 (0 

Formulae (3.7) and (3.12) allow formulation 

of the universal averaging rules which are 
correct both for the periodic movements with 
respect to space and for the periodic movements 

with respect to time: 

Here barred quantities mean averaging opera- 

tion either with respect to space or with respect 

to time. 
This universality of formulae (3.13) allowed 

Reynolds to make no distinction between time 
and space periodicity but to call turbulent 
motions merely periodic motions. 

In the same work published in 1894 Reynolds 
conducted averaging of the Navier-Stokes 
equations following rules (3.13). Thus he included 
constant velocity gradients within a physically 
small volume and for a physically short time 
into turbulent motion equations. 

Reynolds’ considerations discussed above 
probably served for Predvoditelev as the basis 
in his attempt to describe turbulent flows in 
terms of hydrodynamic equations corrected for 
nonideal continuity. 

Moreover. Reynolds’ averaging rules allow 
introduction of constant velocity gradients into 
hydrodynamics equations within a physically 
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small volume and Predvoditelev’s hypothesis equations (3.14)-(3.16), Predvoditelev has ar- 
(2.7) includes any gradients. rived at the following formula for velocity 

In his work “On Turbulent Flows” prepared 
for publication as far back as in 1950* Predvodi- p = P - P wm4 
telev suggested a hypothesis that turbulent flow PB 

appears because of the existence of a special 
kind of a discontinuous process due to com- x (1 - [(l-&/3] cos%} 

(3.17) 

pressibility of any liquid or gas. 
This approach to a turbulent flow reduces to where 0 is the angle between the velocity vector 

finding such a discontinuity front which would V and the normal to the front surface. 

allow a fluid flow to possess all properties Formula (3.17) shows that at the wall where 

characteristic of turbulent flows. the discontinuity front touches it, the flow 

To solve this problem, Predvoditelev made velocity Y is ditferent from zero but has a jump- 

use of hydrodynamic equations such as (2.8) and wise change. Consequently, turbulent flow be- 

Hugoniot-Hadamard method. gins when the flow separates from the wall. 

In case of monoatomic gas Predvoditelev’s Near the wall no definite value can be 

equation for a viscous vortex-free fluid flow is ascribed to /3 as determination of flow dimen- 

of the form sions at the wall is impossible. Therefore the 
expressions 

dii 
p dt = - grad p + pV2V + 1 grad div Y P - P @wP) 

PB 
and ’ -’ 

B 
+ pfl($ grad V2 + V div V). (3.14) must be sought from experiment, thus it is con- 

It should be completed by the state equation venient to express them in terms of velocity at 

in a general form the wall V, and at the axis I’,,. 

p = 4 (P, 7). (3.15) 
Now Predvoditelev has written formula (3.17) 

as 

To describe the condition of heat input, we 
assume that expansion work is compensated by t3.18) 
heat conduction and work of dissipative forces 

4 = J(l - (1 !“n) cos2 0) 

p div V = kV2T - p(VV2V) where 

- L(4v grad div V). (3.16) 

Further Predvoditelev suggested that turbu- 
lent flow lluctuations are characterized by such 
a discontinuity front that first and second 
derivatives of the flow velocity, as well as first 

Having defined the equation of the discon- 

derivatives of pressure and density change 
tinuity front surface as a family of ellipses, Pred- 

sharply while passing this front. As concerns the 
voditelev has presented the following formula for 

temperature, it changes continuously together 
the angle 0 

with all its derivatives. 
In operation of passing through the front cos 8 = 

(1 - Y2) 

following Hugoniot-Hadamard’s method in 1 - e2y2’ 

* This work of Predvoditelev will soon be published in Here e is the eccentricity of the ellipse and y is 
Problems of Physical Hydrodynamics, ed. by A. V. Luikov the ratio of a local radius to the tube radius. 
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Thus formula (3.18) becomes 

d, = -.. .-_- +o 
JL 

------~. (3.19) 

1 - (I - 4 i (1 - Y2) _____- ) @--_ &)2) 1 
Comparison of the above formula with 

experimental data of Nikuradse made by Pre- 
voditelev has demonstrated that the formula 
gives a correct description of liquid flow in 

circular tubes. 
In modern science on turbulent motions 

Prandtl’s hypothesis on a laminar sublayer is 
is adopted. Later a concept of a transition layer 
that isolates laminar layer from a turbulent core 
was introduced. 

Karman adopted this three-region model and 
used it as the basis for his formula of velocity 
distribution in turbulent flows which was con- 
sidered for many years to be very useful and to 
agree fairly well with Nikuradse’s experiments. 

However, in 1949 the American worker Miller 
reported the work “Hypothesis of a Laminar 
Film”. Here the author, using experimental data 
of Nikuradse convincingly proved that the 
latter matched his results so that they would 
agree with the above hypothesis. 

Miller found that in Nikuradse’s paper there 
vyas a disagreement between Table 2 that fur- 
nished results of direct measurements and Table 
3 reporting experimental data expressed in a 
dimensionless form that was necessary for com- 
parison with Karman’s hypothesis. 

In December of 1946 a discussion was held 
between Rose, Bethler and Professor Martinelli. 
Rose suggested to approach Prandtl, who 
directed the work of Nikuradse, concerning the 
above disagreement. 

Prandtl replied that Nikuradse compiled a 
number of tables and plotted I$ = V/V vs. 

y = vy/v. He labelled this curve “old”. Then 
Nikuradse plotted the straight line 4 = q and 
labelled it “laminar”. This line appeared to cross 
the “old” curve. That meant that some measured 
values appeared higher than they would be if 
the flow were not turbulent but laminar. As it 
was not acceptable, Nikuradse supposed that his 
measurements were not as accurate as he 
thought. If a laminar layer exists then the curve 
which corresponds to a turbulent region of the 
flow should be tangent to the straight line for a 
laminar flow at the boundary of the layer. 

To obtain a curve for a turbulent flow region 
tangential to the straight line, Nikuradse added 
seven units to each pl value, thus every point 
being displaced to the right by seven units. 

But this displacement was merely a distortion 
of the data to make them compatible with the 
hypothesis. 

This fact seems to be rather an evidence that 
no Prandtl laminar sublayer exists but there is 
velocity discontinuity at the wall. 

Thus Predvoditelev’s views on the nature of 
turbulent motions stated above do not disagree 
with experimental data and are waiting for 
further investigation. 
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