
Heat Transfer Engineering , 22:3–11, 2001
Copyright C°° 2001 Taylor & Francis
0145–7632/01 $12.00 + .00

heat in history

Early Study of Heat
Transfer: Newton
and Fourier

RICHARD H. S. WINTERTON
School of Manufacturing and Mechanical Engineering, University of Birmingham,
Birmingham, United Kingdom

Editor’s Note: Isaac Newton’s laws of physics govern most of the objects that can be seen and
touched. Less familiar to the general public is Newton’s contribution to heat transfer. It is most
appropriate to mark the 300th anniversary of the publication of “A Scale of the Degrees of Heat”
with Dr. Winterton’s elegant article on the subject. The old phrase, “past is prelude,” is amply
demonstrated by this earliest written example of the science, of heat transfer. It is argued elsewhere
that the heat transfer coef� cient is an inappropriate, confounded variable (because of its frequently
large dependence on temperature). However, the fact remains that the coef� cient is used the world
over in experimentation and computation. The following, fascinating story of how the heat transfer
coef� cient came about has Newton as the central character, but also involves Fourier in a major way,
as well as Biot.

Arthur E. Bergles
Heat in History Editor, Emeritus

Extracts are given from the original articles by Newton (1701) and Fourier (1807). In the case of
Newton a later English translation is used. In the case of Fourier the translation is by the present
author. In this way the contributions of the two scientists to the early study of heat transfer are
explained and an attempt is made to dispel some misconceptions. Newton is correctly associated
with the origin of the understanding of convective heat transfer and Fourier with that of conduction.

The origins of the study of heat transfer are associ-
ated with the names of Newton and Fourier, but it is
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not that easy to � nd copies of their work. It seemed
worthwhile to reproduce short sections of their origi-
nal articles and summarize their contributions . Read-
ing general heat transfer textbooks one can even � nd
statements to the effect that Newton did not really in-
troduce Newton’s law of cooling (it was Fourier) and
that Fourier did not really discover Fourier’s law of heat
conduction (it was Biot). Fortunately, neither of these
statements is supported by more detailed study, but they

3



do suggest that reference to the original sources would
be useful.

In addition to the interests of scholarship in checking
back from time to time that references to these clas-
sic articles are correct, the articles themselves can be
a stimulus to modern thinking. Just following through
logically the implications of Newton’s original expla-
nation of his law of cooling leads to a result for heat
transfer coef� cient for laminar � ow over a � at plate
close to the accepted value. In the case of Newton, this
year is particularly appropriate to remember him, being
the 300th anniversary of his article.

An indication of the interest in this � eld is the much
more wide-ranging article published earlier in this
journal [1].

NEWTON, 1701

Nearly all heat transfer textbooks mention Newton’s
law of cooling, but many do not give a reference. When
a reference is given, it tends to be for the original article
of 1701 [2], failing to point out is that the article is
in Latin. An English translation appeared in 1809 [3]
and has since been reproduced in a number of places
[4–6]. One of these [4] is accompanied by a facsimile
reproduction of Newton’s original Latin article.

Since Newton discovered Newton’s law of cooling,
one might reasonably expect to � nd in his article an
equation like:

Q D h A(Twall ¡ Tbulk) (1)

where Q is the heat � ow rate, h the heat transfer coef� -
cient, and A the surface area; Twall is the temperature of
the solid surface and Tbulk the temperature of the coolant
� owing past. In fact, not only does no such equation

Table 1 Simpli� ed version of Newton’s results

Equal parts Degrees of Converted
of heat, E heat, D Event to ±C

0a 0b Thawing of crushed snow 0a

12 1 Greatest heat in contact with human body 36.4
33a Water begins to boil 100a

34 2.5 Water boils vigorously
34.5 Maximum temperature of boiling water
72 Tin melts 218
81 3.75 Bismuth melts 245
96 4 Lead melts 291

136 4.5 Glows by night but not in twilight 412
146 Antimony solidi� es 442
192 5 Coal � re 582

aReference points for linear conversion.
bIncorrect.

appear, there are no equations in the article at all. New-
ton did not de� ne or use the heat transfer coef� cient.
Also, as the equation stands, it is no more than the
de� nition of heat transfer coef� cient; it only becomes
Newton’s law when the further assumption is made that
h is constant. He did make the key assumption that the
rate of loss of temperature of a hot body is proportiona l
to the temperature itself. Compared to this, writing the
law in the form of an equation is fairly trivial.

It is important in trying to understand the original
article to realize that the science of heat transfer scarcely
existed at that time. Topics that are simply taken for
granted now, such as the de� nition of speci� c heat, or
the existence of a generally agreed temperature scale,
had yet to be properly studied in 1701. Newton’s work
was in fact directed toward establishing a temperature
scale and � nding experimentally a method of measuring
high temperatures. Only peripherally was it concerned
with what is now known as Newton’s law of cooling.

Newton was interested in constructing a scale of tem-
perature that went up to high values. He had a linseed oil
thermometer that went up, in modern terms, to 200±C.
He was looking for a method of measuring considerably
higher temperatures. He decided to do this by using the
transient cooling of a red-hot iron bar. Small samples
of different metals and alloys could be placed on the
bar and the time at which they solidi� ed noted. The
temperatures were deduced from the cooling times, es-
sentially as in the modern lumped-parameter method.
So Newton invented the lumped-parameter method of
transient analysis, a fact that seems to have been gener-
ally overlooked (but is noted in [7 and 8]).

The results were presented in the form of a table. The
distinction between heat and temperature was not clear
at this time; in the table, heat (calor) is being used where
we would use temperature. A shortened version is given
as Table 1 (the complete table is available at [6]). The
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last column in the table is an addition, Newton’s equal
parts of heat translated into degrees Celsius using the
� xed points of melting snow at 0±C and boiling wa-
ter at 100±C and linear interpolation . (If this is not the
� rst use of melting ice as a � xed temperature, then it
must rank very early; Newton’s second � xed tempera-
ture was body heat). As the temperature rises, the values
in the last column are increasingly in error. For exam-
ple, the melting point of antimony is now considered to
be 631±C.

The zero value for the degrees of heat at 0±C is al-
most certainly a mistake, although it is given in all the
English translations; it does not appear in the facsimile
Latin original in Cohen [3], and anyway zero is not an
acceptable temperature in a geometric scale. Mysteri-
ously the mistake has been transmitted back into the
retyped Latin version given in [5].

To explain Table 1 we use Newton’s own words [3]
(the complete article is also available at [6]):

In the � rst column of this table are the degrees of heat in
arithmetical proportion, beginning with that which water has
when it begins to freeze, being as it were the lowest degree
of heat, or the common boundary between heat and cold;
and supposing that the external heat of the human body is 12
parts. In the second column are set down the degrees of heat
in geometrical proportion, so that the second degree is double
the � rst, the third double the second, and the fourth double
the third; and making the � rst degree the external heat of the
human body in its natural state. It appears by this table, that
the heat of boiling water is almost 3 times that of the human
body, of melted tin 6 times, of melted lead 8 times, of melted
regulus 12 times, and the heat of an ordinary kitchen � re is
16 or 17 times greater than that of the human body.

This table was constructed by means of the thermometer
and red-hot iron. By the thermometer were found all the de-
grees of heat, down to that which melted tin; and by the hot
iron were discovered all the other degrees; for the heat which
hot iron, in a determinate time, communicates to cold bodies
near it, that is, the heat which the iron loses in a certain time,
is as the whole heat of the iron; and therefore, if equal times
of cooling be taken, the degrees of heat will be in geomet-
rical proportion, and therefore easily found by the tables of
logarithms.

Newton was able to show, in the range covered by
his linseed oil thermometer, that the two methods of
calculating temperature gave the same answers (in the
range up to 200±C). A further extract from the original
article gives the law of cooling:

Figure 1 The air traveling along in contact with the bar warms up from Tb to Tw , i.e., the air carries away heat proportional to Tw ¡ Tb ,
which is Newton’s law of cooling.

Having discovered these things; in order to investigate the
rest, there was heated a pretty thick piece of iron red-hot,
which was taken out of the � re with a pair of pincers, which
were also red-hot, and laid in a cold place, where the wind
blew continually upon it, and putting on it particles of several
metals, and other fusible bodies, the time of its cooling was
marked, till all the particles were hardened, and the heat of the
iron was equal to the heat of the human body; then supposing
that the excess of the degrees of the heat of the iron, and the
particles above the heat of the atmosphere, found by the ther-
mometer, were in geometrical progression, when the times
are in an arithmetical progression, the several degrees of heat
were discovered; the iron was laid not in a clam air, but in a
wind that blew uniformly upon it, that the air heated by the
iron might be always carried off by the wind and the cold air
succeed it alternately; for thus equal parts of air were heated
in equal times, and received a degree of heat proportional to
the heat of the iron.

Not only is the law stated as the rate of loss of heat is
proportional to temperature (heat in the usage of 1701)
and that it is temperature difference that matters (heat
above the heat of the atmosphere), but the importance of
� uid � ow is stressed, i.e., the law applies to forced con-
vection. Further, the law is explained: the air is taking
away heat proportional to the temperature of the iron bar
because it is heated up to that temperature by contact
with the bar. This explanation of Newton’s law is il-
lustrated in Figure 1. An extension of this reasoning [9]
gives an equation for the heat transfer coef� cient in lam-
inar � ow over a � at plate that is close to accepted modern
results. So Newton’s intuition was close to the truth.

The reason that Newton’s estimates of high tempera-
ture are too low (Table 1) is that he did not take radiation
into account, as explained by Grigull [10]. A detailed
simulation [9, 11], including the effects of varying spe-
ci� c heat of the iron bar as well as radiation, gives the
results in Table 2.

In conclusion, Newton was the � rst to postulate that
the rate of loss of temperature of a hot object, with air
blowing past, is proportiona l to the temperature itself.
This is the essence of his law of cooling even if he did
not de� ne the heat transfer coef� cient. An obvious ex-
tension of the idea is to integrate the law for a transient
cooling process, i.e., Newton originated the lumped-
parameter method of transient analysis. Newton’s ex-
planation of why his law works, that the air warms up
to the heated surface temperature and takes away heat
proportional to the temperature rise, has not been given
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Table 2 Correspondence between Newton’s results (converted to ±C) and the simulation for air velocity
0.5 m/s, bar diameter 0.05 m, and emissivity 0.9

Newton: Newton:
True Equal parts E converted Simulation

temperature (±C) of heat, E to ±C (±C) Event

0 0a 0 Thawing of crushed snow
37 12 36.4 Greatest heat in contact with human body

100 33a 100a 100 Water begins to boil
232 72 218 229 Tin melts
272 81 245 259 Bismuth melts
328 96 291 300 Lead melts
525 136 412 396 Glows by night but not in twilight
631 146 442 436 Antimony solidi� es

1,192 192 582 582 Coal � re

aReference points for linear conversion.

suf� cient prominence. A simple extension of the idea
gives results close to accepted modern equations for
heat transfer coef� cient [9].

Incidentally, it is not correct to assume that Newton
was unaware of the possible existence of thermal radi-
ation. In his Opticks, referred to in [12], he speculates
that there is such a thing as heat radiation and that it is of
the same nature as light. This is the 300th anniversary
of the original (anonymous ) publication of his work on
the law of cooling, but there is evidence that the work
started rather earlier [13].

FOURIER, 1807

Newton dealt with what we would now call forced
convection. The problem of conduction inside a solid
was not tackled until much later.

Fourier’s article of 1807 [14] was not published and
made generally available at the time, but since it was the
� rst version of his theory there is interest in referring
to it. Also, although it is very similar to the published
version of 1822 [15], it is in places shorter and more
simply expressed. For example, rather than assuming
an arbitrary change of the dimensions of the prism con-
ducting the heat, he says suppose the prism were half
as long. The 1822 version has a long philosophica l in-
troduction that does not relate very well to the rest of
the work. An English translation of the 1822 article is
also available [16].

A number of well-known scientists were interested in
the topic of heat transfer in solids at this time. The prob-
lem they had in making any progress was that their start-
ing point was always Newton’s statement that the heat
� ow rate was proportional to the temperature difference.
Although nothing in Newton’s article suggested that this
principle could be applied to heat conduction within
a solid body (he clearly was talking about convection
from the exterior surface of the body to the surrounding

air), they assumed that it applied equally to conduction
within the solid body. For example, Laplace, in 1808
(page 78 of [17]) states (translated) “This principle,
given by Newton, shows that the heat communicated
by one body to another contiguous body is proportiona l
to the difference in their temperatures.”

Fourier’s breakthrough came in recognizing that it
was temperature gradient that mattered in conduction,
and in clearly distinguishin g between what was happen-
ing inside the body and what was happening outside. In
the extracts that follow we have used Fourier’s word
“conductibility,” although it may not be in general use
in either in French or English, to emphasize the confu-
sion that existed prior to his work.

Fourier’s complete article [14] is long, a book rather
than an article. He de� nes temperature, heat, and spe-
ci� c heat much as one might in a practical manner these
days. Temperature is based on expansion of liquid in a
thermometer (he recognizes the anomalous expansion
of water). We now give some extracts. The translation
is by the present author.

Section 16. On the external conductibility (i.e., convective
heat transfer coef� cient) and on the transfer of heat.

Let us suppose that a body with a plane surface of a cer-
tain extent (a square decimeter) is somehow maintained so
that all points of the surface are at a constant temperature
1, and the surface is in contact with air at zero temperature,
or placed in a vacuum. The heat which � ows continuously
through the surface and passes into the surroundings will be
constantly replaced by the heat which keeps the temperature
of the body constant. The quantity of heat passing through
the surface, in a speci� ed time, is continuous and always the
same. The quantity of heat passing through a unit area for a
� xed temperature gives us an exact measure of the external
conductibility, i.e., the facility with which the surface trans-
fers heat to the air, or allows heat to escape into the vacuum.
The value of the quantity of heat which is dissipated through
the surface is in� uenced by various factors.

The value is in� uenced by the spontaneous radiation from
the surface and by the heat which is given to the air. We
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suppose that the air is continuously replaced with a constant,
known velocity. If the speed of the current increases, the part
of the heat that is given to the air also increases; the effect
would be the same if the density of the medium increased. If
the constant excess temperature of the body over that of the air
and the surroundings, which we expressed by 1, changed to a
smaller value, the amount of heat � owing would diminish as
well. Observations made by Newton and several other physi-
cists show that this quantity of heat dissipated is, everything
else being the same, proportional to the excess of tempera-
ture of the body over that of the air and the surroundings.
Each of the two constituent parts, the amount given to the air
and that radiated from all points of the surface, is separately
and without measurable error proportional to this excess of
temperature.

So, designating the amount of heat that is dissipated
through the surface in a given time when the heated surface
is at a temperature 1 and the surroundings are at a tempera-
ture 0 by h, we can conclude that this quantity would have
the value hz if the temperature of the surface was z, all other
circumstances being unchanged.

The value h of the quantity of heat that is dissipated through
a heated surface is different for different bodies, and varies
for a given surface according to the circumstances. The ef-
fect of radiation reduces as the surface is more polished; if
the polished � nish is removed, one increases considerably
the value of h. For example, a heated metallic body will cool
much more quickly if one covers its outer surface with a
black coating able to completely dull the metallic shine. One
obtains a similar effect by applying various coverings to the
surface. The quantity h seems to have values little different
for different metals with polished surfaces, other factors stay-
ing the same.

The rays of heat which escape from the surface of a body
are transmitted across spaces empty of air, to reach colder
bodies. These rays also penetrate atmospheric air and travel
through it without heating it measurably; their direction is
not affected by movement of the intermediate air; they can
be re� ected and join together at the focus of a metallic mirror.

When the heated body is placed in still air at a temperature
0, the heat, which is communicated to the air, makes the layer
of this � uid next to the surface lighter. This layer rises faster
as it receives more heat and is replaced by an equal mass of
air at the temperature 0. A current of air is thus established.
Its direction is vertical and its speed increases as the temper-
ature of the body increases. This is why, if the body cools
progressively, the velocity of the current diminishes with the
temperature, and the law of cooling is not the same as when
the body is exposed to a current of air at constant velocity,
which is the assumption throughout this article.

The value h of the quantity of heat lost by the surface is
proportional to the extent of the surface. This quantity varies
also according to the nature of the � uid environment. The
rate of cooling of a body plunged into a liquid is much faster
than if the medium was a gas, but it is not controlled by the
ratio of the densities, in fact the quantity of heat dissipated is
different for different gases.

We take for the measure of the external conductibility (i.e.,
convective heat transfer coef� cient) of a solid body a coef� -
cient h expressing the quantity of heat that passes during a
speci� ed time (1 minute) from the surface of this body into
atmospheric air, assuming that the surface has a speci� ed area
(1 square decimeter), that the temperature of the body is 1,

that of the air is 0, and that the heated surface is exposed to
a current of air of speci� ed and constant velocity.

We note that there is a complete, quantitative de� -
nition of heat transfer coef� cient. A curious feature is
that Fourier, writing in French, uses h as the symbol
for heat transfer coef� cient. Certainly this is suf� cient
reason for modern usage of the symbol h. If it was good
enough for Fourier, it is good enough for the rest of us.

There is explicit reference to Newton (though this
does not appear in the 1822 version). The article is cor-
rect in that Newton’s law of cooling applies in forced
convection and explains why in very similar terms to
Newton’s article, so obviously Fourier was familiar with
Newton’s work. The main extension to Newton’s law of
cooling is that Fourier has written it down as an equa-
tion, has assumed that heat loss is proportional to sur-
face area, and has de� ned the constant of proportional-
ity. There is a surprisingly good qualitative account of
natural convection and an explanation of why Newton’s
law does not hold in this case. There is a good account
of several aspects of radiation heat transfer. The only
incorrect point is in assuming that radiation follows the
same law, i.e., is proportiona l to temperature difference.
This last mistake is not surprising. If one considers just
black-body radiation over the range 0 to 100±C (with
surroundings at 0±C), the deviation from exact propor-
tionality in the heat transfer coef� cient is only 20%
and experimentally Fourier and other workers of the
time would be trying to detect this against possibly a
larger forced-convection contribution . The problem is
the same as that faced by Newton—how to measure
very high temperatures. Without some method of doing
this, the law of radiation heat transfer was unlikely to
be discovered.

In the following extract Fourier considers what hap-
pens inside the solid body. The � gures have been re-
drawn. The original � gures (which have no captions)
combine the geometric representation of the body with
a graph of the temperature distribution in a manner that
seemed confusing.

Section 17. On the interior conductibility (i.e., thermal
conductivity). Note on the uniform � ow of heat.

Solid substances differ again by the property they have
of being more or less permeable to heat; this quality is their
intrinsic conductibility (thermal conductivity). To de� ne this
and have an exact measure, consider the following question
which relates to the uniform � ow of heat.

Suppose that a solid prism of a certain material has an
unspeci� ed length and that the section perpendicular to the
axis has a speci� ed area (a square decimeter). All points at
one end of the prism, section a, under a continuing action,
are kept at a temperature 1. All points at the other end, sec-
tion A, are kept at a temperature 0. The distance a A is given
(1 decimeter). We ignore the heat which is dissipated through
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Figure 2 Heat conduction between the two end surfaces of a
prism.

the exterior surface of the part of the solid area between the
two sections a and A, i.e., we suppose there is no loss of heat
through this surface (see Figure 2).

With the problem de� ned as above, a � ow of heat will
arise from a to A which will traverse the entire length of the
prism. This � ow of heat, which will change during the � rst
moments, will tend continuously to a uniform and perma-
nent state. If this last state was formed initially, then it would
continue unchanged. Now it is easy to see that in this perma-
nent state the temperature must decrease linearly from 1 to 0.
Suppose that the prism were divided into an in� nite number
of equal slices by planes perpendicular to the axis, and that
temperatures had been assigned to these different slices such
that the excess of temperature of each slice over the follow-
ing slice was the same throughout the extent of the prism for
any two consecutive slices, then the system of temperatures
would experience no change. Now the quantity of heat that
passes from one section of matter to another depends (other
factors being constant) on the excess of temperature of the
� rst body over the second; so if the slices of the same prism
have all the same thickness, and in addition the difference of
temperature between two consecutive slices is constant, each
of these slices will communicate as much heat to the one that
follows as it itself receives from the preceding slice; so the
prism will conserve its present state.

If one changed the nature of the prism, keeping all the
dimensions and the distance between the two sections the
same; if one replaced, for example, copper by iron, the effect

Figure 3 Effect of halving the length of prism over which the temperature drops from 1 to 0.

just described would be different. The temperatures of the
intermediate sections would be the same as in the previous
case, but the quantity of heat � owing, in a given time, between
two slices, would be different. The interior conductibility of
each of the two substances (iron and copper)would be exactly
represented by the amount of heat that � ows, in a given time,
in each of the two cases (see Figure 3).

Suppose now we have a second prism of the same material
as the � rst, whose length ax is half the length a A, with still
a constant temperature 1 at section a, still of area 1 square
decimeter, but the temperature at x is now 0. The distance ax
is 1

2
decimeter. Imagine that this new prism is divided into an

in� nite number of equal slices that have the same thickness as
in the � rst prism. The difference of temperature between two
neighboring slices will still be the same throughout the length
of the solid, once the temperatures have become steady; from
whichone can easily conclude that it will be double thatwhich
it was in the � rst prism, for the temperatures are represented
in the � rst case by the ordinates of the straight line 1 and in the
second case by the ordinates of the straight line 2. Therefore if
one compares two neighboring slices of the second prism with
two neighboring slices of the � rst prism, these four slices all
have the same thickness; but the two systems differ in that the
excess of temperature is twice as large for the second as for the
� rst, so the quantity of heat transmitted, which is, everything
else being equal, independent of the absolute temperatures
and proportional to the excess of temperature of one body
over the other, will also be twice as large in the second prism
as it is in the � rst. In general, to compare the quantities of
heat which � ow, under steady conditions, in different prisms
of the same substance, it is necessary to suppose that two
consecutive slices have the same thickness in both systems,
and compare the excess of temperature. The ratio of these
differences is that of the quantities of heat � owing in a given
time. A result of this is that the quantity of heat that crosses
a given section of a prism, during a given time, does not
depend solely on the excess of temperature of the two extreme
surfaces, but also on the distance at which these two surfaces
are placed. The quantity of heat � owing becomes double,
triple, quadruple, etc., when the excess of temperature of the
extreme surfaces becomes double, triple, quadruple, etc. It
is, all the dimensions staying the same, in direct proportion
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Figure 4 Generalization of the effect, leading to the de� nition of
thermal conductivity.

to the difference of the temperatures. The quantity of heat
� owing becomes double, triple, quadruple, etc., when the
gap between the two surfaces becomes twice, three times,
four times smaller; it is in inverse proportion to the separation
of the surfaces.

When the temperatures of the different slices of the prism
have become steady they are proportional to the ordinates of
a straight line, and the quantity of heat � owing is represented
by the slope of this line (see Figure 4). If one denotes by a
the perpendicular distance from the � rst section to the origin,
by b the temperature of this section, by A the abscissa that
corresponds to the opposite section, and by B the temperature
of this section, and � nally by T the steady temperature of an
intermediate section which corresponds to the abscissa x,
the system of steady temperatures will be represented by the
equation

T D b C (x ¡ a)
(B ¡ b)
(A ¡ a)

The quantity of heat that � ows in a given time through a
certain section of the prism is given by the expression

¡K
B ¡ b

A ¡ a
or ¡ K

1T

1x

in denoting the differences by 1, and K being a constant
coef� cient. If one supposes b D 1 and B D 0, and if A ¡ a,
or 1x , is unit length, the quantity of heat � owing will be
expressed by the coef� cient K .

This coef� cient is the true measure of the interior con-
ductibility (thermal conductivity)of a substance; it represents
the quantity of heat � owing in a steady state in a given time
(1 minute) across a prism formed of this substance, when the
two extreme sections of a square decimeter in area and sepa-
rated by 1 decimeter are maintained at � xed temperatures of
1 and 0, the exterior surface of the prism being impermeable
to heat.

It is perhaps unnecessary to repeat Fourier’s argu-
ment, but one could summarize it as follows. He con-
siders the � ow of heat along a uniform-cross-section bar
and imagines the bar to be divided into slices of equal
thickness. He assumes:

1. Heat � ow rate from one slice to the next to be pro-
portional to the temperature difference 1T between
them

2. Steady state

Assumption 1 is taken directly from Newton (but
Newton was talking about convection from the solid
surface and never considered what happened inside the
solid). Only temperature difference matters, not the ab-
solute temperature level. The Fourier law follows di-
rectly, as illustrated in Figure 5.

We now consider the case where the distance is re-
duced to one-half of the previous value, i.e., the surfaces
at 1 and 0 temperature are separated by half the distance.
The thickness of the slices is the same. The temperature
difference across each pair of adjacent slices is doubled.
So the heat � ow rate is doubled (Newton). The conclu-
sion is that the heat � ow rate depends on 1T=1x .

The treatment in the 1822 article is similar, but
Fourier has decided to adopt modern basic SI units
(somewhat ahead of the United States) and so talks
about a unit length of 1 m and a unit area of 1 m2.

A short while later, in the 1807 article, Fourier intro-
duces the local heat � ow rate as being proportiona l to
dT=dy and goes on to give the solution for a uniform-
cross-section bar losing heat by convection from the
sides. Later he gives a whole range of solutions, in-
cluding transient conduction and the general differen-
tial form of the heat conduction equation. For some of
these solutions he had to invent Fourier series. Looking
through the entire work is a rather sobering experience.
It is a remarkable intellectual achievement and one has
the super� cial impression that it could be republished as

Figure 5 A summary of Fourier’s argument for the steady state
in plane geometry. With all the 1T ’s the same, the temperature
variation must be linear.
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a modern textbook on heat conduction and that little had
been achieved in analytical treatment of heat conduc-
tion between Fourier’s work and Carslaw and Jaegers’
book in 1947 [18].

THE CONTRIBUTION OF BIOT

A last point to consider is the contribution of Biot,
since there have been claims that he should be credited
with the Fourier heat conduction law. Biot published an
article on heat transfer at much the same time [19]. The
article deals mainly with experimental measurements
of temperature along a bar heated at one end. He used
an iron bar around 2.2 m long and 30 mm thick. It was
curved at one end over a 230-mm length to allow it to
be plunged into a constant-temperature pool of mercury
at 82± Réaumur (the Réaumur scale had ice melting
at 0±R and water boiling at 80±R). Holes were drilled
in the bar at 100-mm intervals, � lled with mercury to
ensure good contact, and thermometers inserted. Steady
temperatures were reached after 4 h and measurements
taken after 5 h. The thermometers at the farther end of
the bar showed no signi� cant temperature rise.

The results, for the excess of bar temperature over
ambient temperature, are shown in Figure 6, along with
the exponential law that Biot � tted to the data. Biot did
not give this graph in his article; instead, he gave a table
of the data. The exponential law was � tted to the sec-
ond and fourth readings. In his table he shows that the
other readings � t the exponential law to within 0.5±. In

Figure 6 Biot’s experimental results for the temperature variation along the iron bar, together with an exponential law (solid line) � tted to
the data.

Figure 6, a log scale is used for temperature which has
the advantage that the exponential law appears as a
straight line; it also reveals that the data are system-
atically deviating from the law at large distances. Biot
ignored this and used the exponentia l law to work out
what the temperature of the heat source would have
to be in order to get a 1± increase in temperature at
the farthest thermocouple position. He calculated that
the source would have to be at 23,984± Réaumur (i.e.,
29,980±C). This result, and his general statement that it
was impossible for the heat to reach the far end of the
bar, did not help his credibility.

Biot’s exponentia l law, temperature T D yC¡x
1 , with

y and C1 constants and x distance, is the same as Fourier
derives for an in� nitely long bar (T D C2e¡mx ), but
Biot gives no derivation. Although there is some qual-
itative discussion of some of the heat passing down
the bar and some being lost to the surroundings , he
basically states that the data follow the law without
analysis.

The contrast with the contemporary Fourier article
could not be more glaring. Biot’s article is very short
and has no analysis in the form of equations. Fourier’s
article could pass as a modern textbook on conduction
heat transfer. Fourier’s analysis (for a square bar) proves
that the parameter m in T D C2e¡mx is equal to

2h

KL

where 2L is the thickness of the bar.
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As far as Biot was concerned, m would be little more
than a constant � tted to the results. Fourier’s theory,
applied to a � nite bar, would give a much closer � t to
the data in Figure 6.

Some years later, Biot wrote a textbook on physics
[20]. The section on heat transfer does not go much be-
yond his earlier article. Again there is very little theory
or analysis. If he wanted to prove that he had discovered
the law of heat conduction, he would certainly have in-
cluded the material in this textbook. Not only does he
not do this, he refers to Fourier as the person who has
made advances in the � eld.

Part of the confusion results from criticism of Fourier
at the time. Such a major body of novel analysis was
bound to excite some objections, many of them mathe-
matical. Not only Biot but Lagrange and Laplace were
unhappy about aspects of the work. However, their
criticism was more to the effect that aspects of the work
were wrong than that they themselves had thought of
it � rst. No one now takes these criticisms seriously.
Details are given in [14] and [17].

In conclusion, Fourier was the � rst to distinguish
clearly between what was happening inside the solid
(conduction) and what was happening outside (convec-
tion). He deserves credit as the originator of the heat
transfer coef� cient, h. He was the � rst to state that con-
duction depends on temperature gradient (the Fourier
law) and not on temperature difference as such. Al-
though it was not discussed in detail in this article, he
originated most of what now exists as heat conduction
theory.
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[14] Fourier, J., 1807, Théorie de la propagation de la chaleur,
printed, with comments, in by I. Grattan-Guinness, Joseph
Fourier 1768–1830, MIT Press, Cambridge, MA, 1972.
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